7.2 Notes: Matrix Algebra

Matrices

Definition of Matrix								
If <i>m</i> and <i>n</i> are positive integers, then an $m \times n$ (read " <i>m</i> by <i>n</i> ") matrix is a rectangular array								
Column 1 Column 2 Column 3 Column n								
$\operatorname{Row} \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \end{array} \right]$								
Row 2 a_{21} a_{22} a_{23} a_{2n}								
Row 3 a_{31} a_{32} a_{33} a_{3n}								
$\begin{bmatrix} Row m \\ a_{m1} \end{bmatrix} = \begin{bmatrix} a_{m2} \\ a_{m3} \\ a_{m3} \end{bmatrix} = \begin{bmatrix} a_{m3} \\ a_{mn} \end{bmatrix}$								
in which each entry a_{ij} of the matrix is a number. An $m \times n$ matrix $h_{as} m_{T_{0}}$ and <i>n</i> columns. Matrices are usually denoted by capital letters.								
The entry in the <i>I</i> th row and <i>j</i> th column is denoted by the no	tation a_{ij} . For							
instance, a_{23} refers to the entry in the second row, third column. A matrix that has only one row is cal	lled a							
, and a matrix that has only one column is called a	A matrix							
having <i>m</i> rows and <i>n</i> columns is said to be x If <i>m</i> = <i>n</i> , then the n	natrix is square of							
order $m \ge m$ (or $n \ge n$). For a square matrix, the entries a_{11} , a_{22} , a_{33} , are the main diagonal entries.								
Example 1: Determine the order of each matrix.								

a. [2] b. $[-1 \ -3 \ 0 \ \frac{1}{2}]$ c. $\begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix}$ d. $\begin{bmatrix} -4 & 1 \\ 5 & 0 \\ -3 & 2 \end{bmatrix}$

Example 2: Solve for a_{11} , a_{12} , a_{21} , and a_{22} in the following matrix equation.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -3 & 0 \end{bmatrix}$$

Definition of matrix Addition

If $A = [a_{ij}]$ and $B = [b_{ij}]$ are matrices of order $m \ge n$, then their sum is the $m \ge n$ matrix given by

$$A + B = [a_{ij} + b_{ij}].$$

The sum of two matrices of different orders is undefined.

Definition of Scalar Multiplication

If $A = [a_{ij}]$ is an $m \ge n$ matrix and c is a scalar, then the **scalar multiple** of A by c is the $m \ge n$ matrix given by

$$cA = [ca_{ij}].$$

Example 3: For the following matrices, find (a) A + B, (b) A – B, (c) 3A, and (d) 3A – 2B.

 $A = \begin{bmatrix} 2 & 2 & 4 \\ -3 & 0 & -1 \\ 2 & 1 & 2 \end{bmatrix} and B = \begin{bmatrix} 2 & 0 & 0 \\ 1 & -4 & 3 \\ -1 & 3 & 2 \end{bmatrix}$

Example 4: Perform the indicated matrix operations. $3\left(\begin{bmatrix} -2 & 0 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix} 4 & -2 \\ 3 & 7 \end{bmatrix}\right)$

Example 5: Solve for X in the equation 3X + A = B where

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} and B = \begin{bmatrix} -3 & 4 \\ 2 & 1 \end{bmatrix}$$

Definition of Matrix Multiplication If $A = [a_{ij}]$ is an $m \ge n$ matrix and $B = [b_{ij}]$ is an $n \ge p$ matrix, then the product AB is an $m \ge p$ matrix $AB = [c_{ij}]$ Where $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{i3}b_{3j} + \dots + a_{in}b_{nj}$.

Example 6: Find the product AB using $A = \begin{bmatrix} -1 & 3 \\ 4 & -2 \\ 5 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 2 \\ -4 & 1 \end{bmatrix}$.

Example: 7 Find the product AB and BA using $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & -1 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 4 \\ 1 & 0 \\ -1 & 1 \end{bmatrix}$.

Example 8: Find the product of each of the following or state that the product is not defined.

a. $\begin{bmatrix} 3 & 4 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

b.
$$\begin{bmatrix} 6 & 2 & 0 \\ 3 & -1 & 2 \\ 1 & 4 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$

c.
$$\begin{bmatrix} -2 & 1 \\ 1 & -3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -2 & 3 & 1 & 4 \\ 0 & 1 & -1 & 2 \\ 2 & -1 & 0 & 1 \end{bmatrix}$$

Definition of Identity Matrix

The n x n matrix that consists of 1's on its main diagonal and 0's elsewhere is called the **identity** matrix of order n x n and is denoted by

$$I_n = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

Note that an identity matrix must be *square*. When the order is understood to be $n \ge n$, you can denote I_n simply by I.

For example, $AI_n = A$ and $I_nA = A$.

3 1 -1	-2 0 2	5 [1 4 0 3 0	0 1 0	$\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 3\\1\\-1 \end{bmatrix}$	$-2 \\ 0 \\ 2$	5] 4 and 3	$d\begin{bmatrix}1\\0\\0\end{bmatrix}$	0 1 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$	-2 0 2	$\begin{bmatrix} 5\\4\\3 \end{bmatrix} = \begin{bmatrix} 3\\1\\- \end{bmatrix}$	-2 0 1 2	5 4 3
L—1	Z	21 LU	0	I] [—]	Z	21	LU	0	111-1	Z	21 L-	1 2	21

The Inverse of a Square Matrix

Definition of the Inverse of a Square Matrix

Let A be an $n \ge n$ matrix and let I_n be the $n \ge n$ identity matrix. If there exists a matrix A^{-1} such that

$$AA^{-1} = I_n = A^{-1}A$$

Then A⁻¹ is called the inverse of A. The symbol A⁻¹ is read "A inverse."

Example 9: Show that *B* is the inverse of *A*, where

a)
$$A = \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}$ b) $A = \begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -1 \\ -3 & -2 \end{bmatrix}$

If a matrix A has an inverse, then A is called ______ or _____; otherwise A is called

______. A nonsquare matrix <u>cannot</u> have an inverse.

The inverse of a 2 x 2 matrix: If *A* is a 2 x 2 matrix given by $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then *A* is invertible if and only if $ad - bc \neq 0$. Moreover, if $ad - bc \neq 0$, then the inverse is given by:

 $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ The denominator ad - bc is called the determinant of the 2 x 2 matrix A.

Example 10: If possible, find the inverse of each matrix

a)
$$A = \begin{bmatrix} 3 & -1 \\ -2 & 2 \end{bmatrix}$$
 b) $B = \begin{bmatrix} 3 & -1 \\ -6 & 2 \end{bmatrix}$

c)
$$A = \begin{bmatrix} 5 & -1 \\ 3 & 4 \end{bmatrix}$$